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Abstract

Solutions to the problem set number one of the subject Statistics,
Monte Carlo Methods and Data Processing - Master in Astrophysics, Par-
ticle Physics and Cosmology (Universitat de Barcelona).

1 Problem

1.1 Individual cumulative function

Suppose we have samples for each random variable X, Y and Z (i.i.d):

{X1, ..., Xn} {Y1, ..., Yn} {Z1, ..., Zn}

Let de�ne the maximum of each sample as:

Wx = max (X1, ..., Xn)

Wy = max (Y1, ..., Yn)

Wz = max (Z1, ..., Zn)

And let's consider that these maximums are ordered:

Wx < Wy < Wz

The probability distribution function of Xn, Yn and Zn:

f (x) =

{
6x5 if 0 ≤ x ≤ 1

0 elsewhere
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The cumulative distribution function of individual Xn, Yn and Zn:

F (x) = P (X ≤ x) =
´ x

0
6x5dx = x6 where 0 ≤ x ≤ 1

1.2 Cumulative distribution for X, Y and Z

We seek the cumulative distribution for the maximum of X, Y and Z:

Fx (x) = P (Wx < x) = x6

Fx,y (x) = P (Wx < x,Wy < x) = x6 · x6 = x12
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Fx,y,z (x) = P (Wx < x,Wy < x) = x6 · x6 · x6 = x18

1.3 Probability density of X, Y and Z

The probability density is derived from the cumulative distribution:

fx,y,z (x) =
d

dx
Fx,y,z (x) = 18x17
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2 Problem

2.1 Probability of containing only two queens in the set
A

Recall (combinations without repetition where order does not matter):(
n

k

)
=

n!

k! · (n− k)!

Number of ways we can pick 26 cards to form set A:

� Population n: 52 cards

� Sample k: 26 cards(
n

k

)
=

n!

k! · (n− k)!
=

52!

26! · (52− 26)!
= 495.918.532.948.104

Number of ways we can pick 2 queens from 4:

� Population n: 50 cards

� Sample k: 24 cards(
4

2

)
=

n!

k! · (n− k)!
=

4!

2! · (4− 2)!
= 6

Number of ways we can pick 24 card from the remaining:

� Population n: 48 cards

� Sample k: 24 cards(
48

24

)
=

n!

k! · (n− k)!
=

48!

24! · (48− 24)!
= 32.247.603.683.100

Probability of containing two queens in the set A:

P (”Two queens in setA”) = 6 · 32.247.603.683.100

495.918.532.948.104
=

325

833
= 0.39016

2.2 Probability of containing the queen of spades and the
queen of diamonds in the set A

Consider we have already picked the two queens and there are 50 remaining
cards. Number of ways of completing the set A with 24 more cards:

� Population n: 50 cards
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� Sample k: 24 cards(
n

k

)
=

n!

k! · (n− k)!
=

50!

24! · (50− 24)!
= 121.548.660.036.300

Probability of containing the two queens in the set A:

P (”Two concrete queens in setA”) =
121.548.660.036.300

495.918.532.948.104
=

25

102
= 0.2451

3 Problem

3.1 Probability density for Z = X / Y (ratio distribution)

Given:

X = e
−x2

2σ2x

Y = e
−x2

2σ2y

The probability density for Z:

Z =
X

Y
=
e

−x2

2σ2x

e
−x2
2σ2y

= e
−x2

2σ2x
−−x2

2σ2y = e
−
(
x2

2σ2x
− x2

2σ2y

)
= e−(α)

Detailed calculation of the exponent:

α =
x2

2σx
− x2

2σy
=
x2 · σy − x2 · σx

2σ2
xσ

2
y

=
x2 · (σy − σx)

2σ2
xσ

2
y

=
x2

2 · σ2
xσ

2
y

σy−σx

Therefore:

Z =
X

Y
= e−(α) = e

−

 x2

2·
σ2xσ

2
y

σy−σx



And it can be considered that the standard deviation of the new probability
density is:

σz =

√
σ2
xσ

2
y

σy − σx
In consequence, the probability density for Z can be written as:

Z =
X

Y
= e
− x2

2σ2z
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4 Problem

We've got a limited alphabet of L elements:

X = {x1, x2, . . . , xL}

If we choose m letters from this alphabet, each new letter is independent from
the past picked letters:

P (xn|xn−1, ..., xn−n) = P (xn) =
1

L

Therefore, individual probability for one pick (m=1 and n=1):

P (A letter being picked) =
1

L

P (A letter NOT being picked) = 1− 1

L

And the probability of picking only 1 concrete letter (n=1) for m picks:

P (A letter being picked only 1 time) =

(
1

L

)1

·
(

1− 1

L

)m−1

Finally, the probability of picking n times a letter for m picks:

P (A letter being picked n times) =
(

1
L

)n · (1− 1
L

)m−n
where n ≤ m

5 Problem

Let's consider the following random variables (numbers correspond to the dif-
ferent boxes):

SelectedBox ∈ {1, 2, 3}My box selection
ObjectBox ∈ {1, 2, 3} Box where the desired object is lo-
cated
OpenBox ∈ {1, 2, 3} Box opened by the Oracle

My box selection and the box where the desired object is located are independent
variables:

P (SelectedBox) = P (SelectedBox|ObjectBox) =
1

3

P (ObjectBox) = P (ObjectBox|SelectedBox) =
1

3
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Otherwise, the Oracle will open one box or another depending on my selection
and on the location of the desired object:

P (OpenBox|SelectedBox,ObjectBox) =


1
2 if SelectedBox = ObjectBox

1 if OpenBox 6= ObjectBox 6= SelectedBox

0 if OpenBox = SelectedBox

0 if OpenBox = ObjectBox

And we wan to know, what is the probability of a box containing the desired
object if we already have made an initial selection and the Oracles has open a
box:

P (ObjectBox|SelectedBox,OpenBox)

To make the calculation we can use the Bayes' theorem:

Abbreviations:

SelectedBox = Select
ObjectBox = Obj
OpenBox = Open

P (Obj|Select, Open) =
P (Open|Select, Obj)P (Obj|Select)

P (Open|Select)

where

P (Open|Select) =

3∑
Obj=1

P (Open,Obj|Select) =

3∑
ObjBox=1

P (Open|Select, Obj)P (Obj|Select)

For example, once I have selected a box (number 2) and the Oracle has opened
number 3:

SelectedBox = 2

OpenBox = 3

The probability of the object being in the remaining box (number 1):

ObjectBox = 1 6= SelectedBox

P (ObjectBox|SelectedBox,OpenBox) =
1 · 1

3
1
2 ·

1
3 + 1 · 1

3 + 0 · 1
3

=
2

3
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And the probability that the object is on my selected box (number 2):

ObjectBox = SelectedBox

P (Obj = Select|Select, Open) = 1− P (Obj|Select, Open) =
1

3

In conclusion, it is better to choose the remaining box and change my initial
choice.

6 Problem

6.1 Inequality

We have four random variables (from Alice and Bob's perspective):

{A1, A2} Properties that Alice is interested in
{B1, B2} Properties that Bob is interested in

This random variables can take values {−1,+1}. Oscar, the oracle, draws a
random variable Λ according to the probability distribution π. In this context,
this variable acts as a hidden variable that determines the outcome (ai for Alice,
bi for Bob) of any measurement:

ai = fA (Ai, λ)
bi = fB (Bi, λ)

Whereλ is a value of the random variable Λ. Given these premises, it is clear
that one of the following equations must be true:

Subtraction: fA (A1, λ)− fA (A2, λ) = 0
Addition: fA (A1, λ) + fA (A2, λ) = 0

a1 a2 Subtraction= 0 Addition= 0

−1 −1 True False
−1 +1 False True
+1 +1 True False
+1 −1 False True

Therefore:

fA (A1, λ) fB (B1, λ) + fA (A2, λ) fB (B1, λ) + fA (A1, λ) fB (B2, λ)
−fA (A2, λ) fB (B2, λ) = fB (B1, λ) (fA (A1, λ) + fA (A2, λ))

+fB (B2, λ) (fA (A1, λ)− fA (A2, λ)) ≤ 2 (6.1.1)
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If addition= 0, the �rst term is equal to zero and the second one cannot be
greater (less) than +2 (-2) (i.e. maximum: fA (A1, λ) = +1 and fA (A2, λ) =
+1). Otherwise, if subtraction= 0, the second term is equal to zero and the �rst
one cannot be also greater (lesser) than +2 (-2) (i.e. maximum: fA (A1, λ) = +1
and fA (A2, λ) = −1).

After a large number of experiments, Alice and Bob can measure the correlators
〈AiBj〉 (the mean value of the product of their outcomes):

〈A1B1〉 =
´

Λ
fA (A1, λ) fB (B1, λ)π (λ) dλ

〈A1B2〉 =
´

Λ
fA (A1, λ) fB (B2, λ)π (λ) dλ

〈A2B1〉 =
´

Λ
fA (A2, λ) fB (B1, λ)π (λ) dλ

〈A2B2〉 =
´

Λ
fA (A2, λ) fB (B2, λ)π (λ) dλ

Now, let's consider:

|〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉| =´
Λ
fA (A1, λ) fB (B1, λ)π (λ) dλ +

´
Λ
fA (A2, λ) fB (B1, λ)π (λ) dλ +´

Λ
fA (A1, λ) fB (B2, λ)π (λ) dλ−

´
Λ
fA (A2, λ) fB (B2, λ)π (λ) dλ

=
´

Λ
{fA (A1, λ) fB (B1, λ) + fA (A2, λ) fB (B1, λ) + fA (A1, λ) fB (B2, λ) −

fA (A2, λ) fB (B2, λ)}π (λ) dλ

Inside the integral we have the term (6.1.1) which we know it is less (greater)
than +2 (-2), therefore:

|〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉| ≤ 2

6.2 Joint probability distribution

Alice and Bob choose what measurement to do (Aiand Bi respectively) at ran-
dom from some joint distribution ψ (Ai, Bj), and they get their outcomes ai and
bj . So, the whole experiment's outcome has the following probability distribu-
tion:

P (Ai, Bj ; ai, bj) = ψ (Ai, Bj)P (ai, bj |Ai, Bj)

And outcomes ai and bj are determined by a hidden random variable Λ (accord-
ing to the probability distribution π) with value λ and the functions fA (Ai, λ)
and fB (Bj , λ). So it can be written as a convex combination of independent
probability distributions and the joint probability distribution can be considered
local.

6.3 Quantum mechanical experiments

As the problem stated, Alice can use two detector setting from which will mea-
sure a spin singlet property (i.e. xA and zA axis), and Bob can also use its own
detector for measuring other two properties (i.e. axis xB and zB , which are
rotated 135º relative to Alice's axis).

If we consider the Pauli matrices:
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σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
Let's use σx and σx as the observables and the following eigenvectors:∣∣ 1

2 ,+
1
2

〉
eigenvector of σz with eigenvalue +1∣∣ 1

2 ,−
1
2

〉
eigenvector of σz with eigenvalue −1

Then, the spin singlet state is represented by:

1√
2

(∣∣∣∣12 ,+1

2

〉
A

∣∣∣∣12 ,−1

2

〉
B

−
∣∣∣∣12 ,−1

2

〉
A

∣∣∣∣12 ,+1

2

〉
B

)
Note that products among eigenvectors correspond to tensor products ⊗.
Therefore, the measurements that Alice and Bob can perform:

fA (A1) = σz ⊗ I
fA (A2) = σx ⊗ I
fB (B1) = − 1√

2
· I ⊗ (σz + σx)

fB (B2) = 1√
2
· I ⊗ (σz − σx)

Where I is the identity matrix:

I = (σx)
2 · (σy)

2 · (σz)2
= −iσxσyσz =

(
1 0
0 1

)
Then we can state that:

〈fA (A1) fA (B1)〉 = 〈fA (A2) fA (B1)〉 = 〈fA (A2) fA (B2)〉 =
1√
2

〈fA (A1) fA (B2)〉 = − 1√
2

Therefore, the inequality established at the beginning of this problem is violated:

〈fA (A1) fA (B1)〉+ 〈fA (A2) fA (B1)〉+ 〈fA (A2) fA (B2)〉− 〈fA (A1) fA (B2)〉 =
4√
2

= 2
√

2 > 2

6.4 Conclusion

The initial theoretical inequality corresponds to Bell's theorem and it is deduced
considering that:
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� Realism: Hidden variables exists (although nowadays we cannot measure
them) and determine the measurements that can do Bob and Alice

� The principle of locality is respected: an object is in�uenced only by its
near surroundings

But as quantum experiments show, this inequality is violated and therefore at
least one of the above statements is false. It's implication are huge for sci-
ence and physics, although it does not demonstrate that quantum physics is a
complete theory, it invalidates any real-local theory which consider the above
statements true.

Either instantaneous large distance in�uence can be possible or our universe does
not have �xed properties until we measure them, which seems to be counter-
intuitive ideas with a great philosophical impact about our concept of reality.
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